Pengertian Transformasi Geometri

 Nessa Ramadhani Putri 

XI IPS 3

Transformasi Geometri

Transformasi geometri merupakan perubahan suatu bidang geometri yang meliputi posisi, besar dan bentuknya sendiri. Jika hasil transformasi kongruen dengan bangunan yang ditranformasikan, maka disebut transformasi isometri. Transformasi isometri sendiri memiliki dua jenisya itu transformasi isometri langsung dan transformasi isometri berhadapan. Transformasi isometri langsung termasuk translasi dan rotasi, sedangkan transformasi isometri berhadapan termasuk refleksi.

Translasi

Translasi merupakan pergeseran atau pemindahan semua titik pada bidang geometri sejauh dan arah yang sama. Penulisan atau notasi translasi sama dengan notasi vektor. Jika titik B ditranslasi sampai titik B^I maka dapat dinotasikan:

\overrightarrow{BB^I}

Sebagai contoh:

transformasi geometri bentuk translasi

Titik A, B, dan C, masing-masing ditranslasikan ke titik AI, BI, dan CI dengan jarak dan arah yang sama.

Suatu translasi dapat ditinjau terhadap sumbu x dan sumbu y. Pergeseran sejauh a sejajar sumbu x (bergeser ke kanan a>0, ke kiri a<0) dan pergeseran sejauh b sejajar sumbu y (bergeser ke atas b>0, ke bawah b<0) dinyatakan sebagai:

T =\left(\begin{array}{r} a\\ b\end{array}\right)

Dengan a dan b adalah komponen translasi. Bentuk-bentuk translasi sejauh (\frac{a}{b}) sebagai berikut:

Posisi Awal

Posisi Akhir

Pergeseran

Translasi Titik

A(x, y)
  • AI (x+a, y+b)
    Dengan x dan y adalah koordinat
translasi titik

Translasi Garis

mx+ny=c
  • m(x + a) + n(y + b) = c
    Dengan m dan n adalah koefisien dan c konstanta
translasi garis

Translasi Kurva

y = mx2 + kx + l
  • (y+b) = m(x+a)^2 + k(x+a) + l
    Dengan m dan k adalah koefisien dan l konstanta
translasi kurva

Translasi Lingkaran

x2 + y2 = c
  • (x + a)^2 + (y + b)^2 = c
    Dengan c adalah konstanta
translasi lingkaran

Refleksi

Refleksi merupakan transformasi geometri berupa pergeseran atau pemindahan semua titik pada bidang geometri kearah sebuah garis atau cermin dengan jarak sama dengan dua kali jarak titik kecermin. Ada dua sifat penting dalam refleksi:

Sebagai contoh:

refleksi

Bentuk refleksi terhadap berbagai garis sebagai berikut:

TitikGaris/KurvaGambar Refleksi
AwalBayanganAwalBayangan

Refleksi sumbu y

A(x, y)AI (-x, y)y = f(x)yI = f(-x) refleksi sumbu y

Refleksi sumbu y = h

A(x, y)AI (x, 2h – y)y = f(x)yI = 2h – f(x) refleksi sumbu y = h

Refleksi sumbu x = h

A(x, y)AI (2h – x, y)y = f(x)yI = f(2h – x) refleksi sumbu x = h

Refleksi sumbu y = x

A(x, y)AI (y, x)y = f(x)x = f(y) refleksi sumbu y = x

Refleksi sumbu y = -x

A(x, y)AI (-y, -x)y = f(x)x = -f(-y) refleksi sumbu y = -x

Refleksi terhadap titik O (0,0)

A(x, y)AI (-x, -y)y = f(x)yI = -f(-x) refleksi titik 00

Selain refleksi terhadap garis diatas, titik dan kurva juga dapat direfleksikan terhadap suatu garis y=mx+k. Berikut refleksinya:

refleksi terhadap garis dan kurva

Dapat di gambarkan:

transformasi geometri pencerminan

Rotasi

Rotasi atau perputaran merupakan transformasi geometri berupa pergeseran atau pemindahan semua titik pada bidang geometri sepanjang busur lingkaran yang memiliki titik pusat lingkaran sebagai titik rotasi. Rotasi dinyatakan positif jika arahnya berlawanan jarum jam, dan bernilai negatif jika searah jarum jam. Sebagai contoh:

rotasi transformasi geometri

Titik A berotasi 90o berlawanan arah jarum jam. Dalam diagram cartesius, bentuk-bentuk rotasi sebagai berikut:

Komentar

Postingan populer dari blog ini

Turunan Persamaan Garis Singgung Kurva Menggunakan turunan

Tugas Matematika SPLTV