Pengertian Transformasi Geometri
Nessa Ramadhani Putri
XI IPS 3
Transformasi Geometri
Transformasi geometri merupakan perubahan suatu bidang geometri yang meliputi posisi, besar dan bentuknya sendiri. Jika hasil transformasi kongruen dengan bangunan yang ditranformasikan, maka disebut transformasi isometri. Transformasi isometri sendiri memiliki dua jenisya itu transformasi isometri langsung dan transformasi isometri berhadapan. Transformasi isometri langsung termasuk translasi dan rotasi, sedangkan transformasi isometri berhadapan termasuk refleksi.
Lihat juga materi StudioBelajar.com lainnya:
Pengertian, Rumus, & Operasi Vektor
Barisan & Deret: Aritmatik & Geometri
Transformasi geometri merupakan perubahan suatu bidang geometri yang meliputi posisi, besar dan bentuknya sendiri. Jika hasil transformasi kongruen dengan bangunan yang ditranformasikan, maka disebut transformasi isometri. Transformasi isometri sendiri memiliki dua jenisya itu transformasi isometri langsung dan transformasi isometri berhadapan. Transformasi isometri langsung termasuk translasi dan rotasi, sedangkan transformasi isometri berhadapan termasuk refleksi.
Pengertian, Rumus, & Operasi Vektor
Barisan & Deret: Aritmatik & Geometri
Translasi
Translasi merupakan pergeseran atau pemindahan semua titik pada bidang geometri sejauh dan arah yang sama. Penulisan atau notasi translasi sama dengan notasi vektor. Jika titik B ditranslasi sampai titik maka dapat dinotasikan:
Sebagai contoh:
Titik A, B, dan C, masing-masing ditranslasikan ke titik AI, BI, dan CI dengan jarak dan arah yang sama.
Suatu translasi dapat ditinjau terhadap sumbu x dan sumbu y. Pergeseran sejauh a sejajar sumbu x (bergeser ke kanan a>0, ke kiri a<0) dan pergeseran sejauh b sejajar sumbu y (bergeser ke atas b>0, ke bawah b<0) dinyatakan sebagai:
Dengan a dan b adalah komponen translasi. Bentuk-bentuk translasi sejauh sebagai berikut:
Posisi Awal
Posisi Akhir
Pergeseran
Translasi Titik
A(x, y) - AI (x+a, y+b)
Dengan x dan y adalah koordinat
Translasi Garis
mx+ny=c - m(x + a) + n(y + b) = c
Dengan m dan n adalah koefisien dan c konstanta
Translasi Kurva
y = mx2 + kx + l
Dengan m dan k adalah koefisien dan l konstanta
Translasi Lingkaran
x2 + y2 = c
Dengan c adalah konstanta
Translasi merupakan pergeseran atau pemindahan semua titik pada bidang geometri sejauh dan arah yang sama. Penulisan atau notasi translasi sama dengan notasi vektor. Jika titik B ditranslasi sampai titik maka dapat dinotasikan:
Sebagai contoh:
Titik A, B, dan C, masing-masing ditranslasikan ke titik AI, BI, dan CI dengan jarak dan arah yang sama.
Suatu translasi dapat ditinjau terhadap sumbu x dan sumbu y. Pergeseran sejauh a sejajar sumbu x (bergeser ke kanan a>0, ke kiri a<0) dan pergeseran sejauh b sejajar sumbu y (bergeser ke atas b>0, ke bawah b<0) dinyatakan sebagai:
Dengan a dan b adalah komponen translasi. Bentuk-bentuk translasi sejauh sebagai berikut:
Posisi Awal | Posisi Akhir | Pergeseran |
Translasi Titik | ||
A(x, y) |
| |
Translasi Garis | ||
mx+ny=c |
| |
Translasi Kurva | ||
y = mx2 + kx + l |
| |
Translasi Lingkaran | ||
x2 + y2 = c |
|
Refleksi
Refleksi merupakan transformasi geometri berupa pergeseran atau pemindahan semua titik pada bidang geometri kearah sebuah garis atau cermin dengan jarak sama dengan dua kali jarak titik kecermin. Ada dua sifat penting dalam refleksi:
- Jarak titik kecermin sama dengan jarak bayangan titik ke cermin.
- Geometri yang direfleksikan berhadapan dengan petanya.
Sebagai contoh:
Bentuk refleksi terhadap berbagai garis sebagai berikut:
Titik Garis/Kurva Gambar Refleksi Awal Bayangan Awal Bayangan Refleksi sumbu y
A(x, y) AI (-x, y) y = f(x) yI = f(-x) Refleksi sumbu y = h
A(x, y) AI (x, 2h – y) y = f(x) yI = 2h – f(x) Refleksi sumbu x = h
A(x, y) AI (2h – x, y) y = f(x) yI = f(2h – x) Refleksi sumbu y = x
A(x, y) AI (y, x) y = f(x) x = f(y) Refleksi sumbu y = -x
A(x, y) AI (-y, -x) y = f(x) x = -f(-y) Refleksi terhadap titik O (0,0)
A(x, y) AI (-x, -y) y = f(x) yI = -f(-x)
Selain refleksi terhadap garis diatas, titik dan kurva juga dapat direfleksikan terhadap suatu garis y=mx+k. Berikut refleksinya:
Dapat di gambarkan:
Refleksi merupakan transformasi geometri berupa pergeseran atau pemindahan semua titik pada bidang geometri kearah sebuah garis atau cermin dengan jarak sama dengan dua kali jarak titik kecermin. Ada dua sifat penting dalam refleksi:
- Jarak titik kecermin sama dengan jarak bayangan titik ke cermin.
- Geometri yang direfleksikan berhadapan dengan petanya.
Sebagai contoh:
Bentuk refleksi terhadap berbagai garis sebagai berikut:
Titik | Garis/Kurva | Gambar Refleksi | ||
Awal | Bayangan | Awal | Bayangan | |
Refleksi sumbu y | ||||
A(x, y) | AI (-x, y) | y = f(x) | yI = f(-x) | |
Refleksi sumbu y = h | ||||
A(x, y) | AI (x, 2h – y) | y = f(x) | yI = 2h – f(x) | |
Refleksi sumbu x = h | ||||
A(x, y) | AI (2h – x, y) | y = f(x) | yI = f(2h – x) | |
Refleksi sumbu y = x | ||||
A(x, y) | AI (y, x) | y = f(x) | x = f(y) | |
Refleksi sumbu y = -x | ||||
A(x, y) | AI (-y, -x) | y = f(x) | x = -f(-y) | |
Refleksi terhadap titik O (0,0) | ||||
A(x, y) | AI (-x, -y) | y = f(x) | yI = -f(-x) |
Selain refleksi terhadap garis diatas, titik dan kurva juga dapat direfleksikan terhadap suatu garis y=mx+k. Berikut refleksinya:
Dapat di gambarkan:
Rotasi
Rotasi atau perputaran merupakan transformasi geometri berupa pergeseran atau pemindahan semua titik pada bidang geometri sepanjang busur lingkaran yang memiliki titik pusat lingkaran sebagai titik rotasi. Rotasi dinyatakan positif jika arahnya berlawanan jarum jam, dan bernilai negatif jika searah jarum jam. Sebagai contoh:
Titik A berotasi 90o berlawanan arah jarum jam. Dalam diagram cartesius, bentuk-bentuk rotasi sebagai berikut:
Rotasi atau perputaran merupakan transformasi geometri berupa pergeseran atau pemindahan semua titik pada bidang geometri sepanjang busur lingkaran yang memiliki titik pusat lingkaran sebagai titik rotasi. Rotasi dinyatakan positif jika arahnya berlawanan jarum jam, dan bernilai negatif jika searah jarum jam. Sebagai contoh:
Titik A berotasi 90o berlawanan arah jarum jam. Dalam diagram cartesius, bentuk-bentuk rotasi sebagai berikut:
Komentar
Posting Komentar