Tugas Matematika Sistem Persamaan Linear dan Kuadrat Dua Variabel (SPLKDV)
Sistem Persamaan Linear dan Kuadrat Dua Variabel (SPLKDV)
Banyak persoalan pada bidang sains, bisnis, dan juga teknik yang melibatkan dua atau lebih persamaan dalam dua atau lebih variabel.
Dan dalam menyelesaikan persoalan tesebut ini, kita harus menemukan solusinya dengan menggunakan sistem persamaan.
Dan untuk SPLDKV sendiri memiliki bentuk umum seperti berikut ini:
y = ax + b (bentuk linear)
y = px2 + qx + r (bentuk kuadrat)
Keterangan:
Dengan a, b, p, q, r merupakan bilangan real.
Cara Penyelesaian SPLKDV
Berikut adalah tahapan atau langkah-langkah dalam menyelesaikan persoalan SPLKDV, diantaranya ialah sebagai berikut:
- Subtitusikan y = ax+b menjadi y = px2 + qx + r sehingga akan terbentuk persamaan kuadrat.
- Menentukan akar-akar persamaan kuadrat yang terbentuk yaitu x1 dan x2.
- Subtitusikan x1 dan juga x2 ke dalam bentuk persamaan bentuk linear untuk memperoleh y1 dan y2.
- Himpunan penyelesaiannya yaitu {(x1,y1),(x2,y2)}.
Himpunan penyelesaian antara persamaan bentuk linear dengan bentuk kuadrat mempunyai tiga kemungkinan, diantaranya yaitu:
- Apabila D>0, maka garis serta parabola berpotongan di dua titik yang di mana adalah himpunan penyelesaiannya.
- Apabila D = 0, maka garis serta parabola berpotongan di satu titik yang di mana adalah himpunan penyelesaiannya.
- Apabila D < 0, maka garis seta parabola tidak berpotongan sehingga tidak memiliki himpunan penyelesaian atau { }.
Metode Substitusi
Berikut ini adalah contoh dari sistem persamaan dua variabel:
x – y = -4 ……………. Persamaan 1
x2 – y = -2 ……………. Persamaan 2
Penyelesaian dari sistem ini adalah pasangan berurutan yang di mana akan memenuhi masing-masing persamaan dalam sistem tersebut.
Proses dalam menemukan himpunan dalam metode atau penyelesaian ini disebut sebagai menyelesaikan sistem persamaan.
Menguji (–1, 3) ke dalam Persamaan 1 serta Persamaan 2:
x – y = -4 → Tulis persamaan 1.
-1 – 3 = -4 → Substitusi -1 ke x dan 3 ke y.
-4 = -4 → Penyelesaian teruji dalam persamaan 1.
x2 – y = -2 → Tulis persamaan 2.
(-1)2 – 3 = -2 → Substitusi -1 ke x dan 3 ke y.
1 – 3 = -2 → Sederhanakan.
-2 = -2 → Penyelesaian teruji dalam persamaan 2.
Di sini akan kita pelajari dua macam cara dalam menyelesaikan sistem persamaan linear serta kuadrat dua variabel. Kita mulai dengan menggunakan metode substitusi.
Metode Substitusi
- Selesaikan satu persamaan, sehingga akan ada satu variabel pada persamaan tersebut yang dinyatakan ke dalam bentuk variabel lainnya.
- Substitusi bentuk yang diperoleh dalam tahap pertama ke dalam persamaan lainnya untuk memperoleh persamaan dalam satu variabel.
- Selesaikan persamaan yang didapatkan pada tahap ke dua.
- Substitusi balik nilai yang kita dapatkan di tahap tiga ke dalam persamaan yang didapatkan di tahap pertama guna menemukan nilai variabel lainnya.
- Uji selesaian ini apakah memenuhi masing-masing persamaan dalam sistem.
Contoh Soal:
Himpunan penyelesaian dari sistem persamaan di bawah ini yaitu:
A. {(2,-1),(3,0)}
B. {(1,2),(3,0)}
C. {(-1,0),(2,3)}
D. {(2,3),(0,-1)}
E. {(0,3),(-1,2)}
Jawab:
Substitusikan y = x – 3 ke y = x2 – 4x + 3, sehingga akan kita dapatkan:
x – 3 = x2 – 4x + 3
<=> -x2 + 5x – 6 = 0
<=> x2 – 5x + 6 = 0
<=> (x – 3)(x – 2) = 0
<=> x1 = 3 atau x2 = 2
Untuk x1 = 3 maka y1 = 3 – 3 = 0
Untuk x2 = 2 maka y2 = 2 – 3 = -1
Sehingga, himpunan penyelesaiannya yaitu {(2,-1),(3,0)}
Maka jawaban yang paling tepat adalah: A
2. Sistem Persamaan Kuadrat (SPK)
Sistem persamaan kuadrat dengan variabel x serta y pada umumnya dinyatakan seperti berikut ini:
y = ax2 + bx + c
y = px2 + qx + r
Keterangan:
Dengan a, b, p, q, r merupakan bilangan real.
Cara Penyelesaian SPK
- Substitusikan persamaan yang satu ke dalam persamaan yang lainnya sehingga akan membentuk persamaan kuadrat.
- Menentukan akar-akar persamaan kuadrat yang terbentuk sehingga akan kita dapatkan himpunan penyelesaiannya, yaitu: {(x1,y1),(x2,y2)}
Himpunan penyelesaian dari sistem persamaan kuadrat mempunyai 6 kemungkinan, diantaranya yaitu:
- Apabila D > 0, maka kedua parabola akan berpotongan di dua titik yang di mana adalah himpunan penyelesaiannya.
- Apabila D = 0, maka kedua parabola akan berpotongan di satu titik yang di mana adalah himpunan penyelesaiannya
- Apabila D < 0, maka kedua parabola tidak akan berpotongan sehingga tidak memiliki himpunan penyelesaian atau { }
- Apabila a = p, b ≠ q, maka kedua parabola akan berpotongan di satu titik yang di mana adalah himpunan penyelesaiannya
- Apabila a = p, b = q dan c ≠ r, maka kedua parabola tidak akan berpotongan sehingga himpunan penyelesaiannya { }
- Apabila a = p, b ≠ q dan c = r, maka kedua parabola berimpit sehingga anggota dari himpunan penyelesaiannya tak berhingga penyelesaiannya.
Contoh Soal:
Himpunan penyelesaian dari sistem persamaan di bawah ini adalah:
A. {(5,2),(2,3)}
B. {(2,-5),(2,-3)}
C. {(-2,5),(2,-3)}
D. {(-2,-3),(2,-5)}
E. {(-3,5),(2,-2)}
Jawab:
Substitusikan persamaan dari y = x2 -2x – 3 ke dalam persamaan y = -x2 -2x + 5, sehingga:
x2 -2x – 3 = -x2 -2x + 5
<=> 2x2 -8 = 0
<=> x2 – 4 = 0
<=> (x – 2)(x + 2) = 0
<=> x = 2 atau x = -2
Untuk x = 2
y = x2 – 2x – 3
y = (2)2 -2 (2) – 3
y = 4 – 4 – 3
y = -3
Untuk x = -2
y = x2 – 2x – 3
y = (-2)2 -2 (-2) – 3
y = 4 + 4 – 3
y = 5
Maka dari itu, himpunan penyelesaiannya dari soal di atas adalah {(-2,5),(2,-3)}
Sehingga jawaban yang paling tepat adalah: C.
SISTEM PERTIDAKSAMAAN LINIER DAN KUADRAT
Pertidaksamaan linier dua variabel yaitu suatu pertidaksamaan yang memuat dua variabel dengan pangkat tertinggi satu.
Penyelesaian dari pertidaksamaa linier dua variabel ini merupakan gambar daerah pada grafik Catesius (sumbu-XY) yang dibatasi oleh suatu garis linier.
Untuk lebih jelasnya ikutilah contoh soal berikut ini :
01. gambarlah daerah penyelesaian pertidaksamaan linier y ≤ –2x + 6, dengan x dan y anggota real.
Jawab
Apabila daerah penyelesaian pertidaksamaan linier diketahui dan garis batasnya melalui dua titik tertentu, maka pertidaksamaan liniernya dapat ditentukan.
Jika kedua titik yang diketahui berada pada sumbu-X dan sumbu-Y, maka persamaan liniernya ditentukan dengan rumus:
Untuk lebih jelasnya akan diuraikan pada contoh soal berikut:
Sedangkan pertidaksamaan kuadrat dua variabel (x dan y) merupakan suatu pertidaksamaan dengan variabel x memiliki pangkat tertinggi dua
Secara umum bentuk fungsi kuadrat adalah y = ax2 + bx + c dan grafiknya berbentuk parabola. Untuk menggambar grafiknya, diperlukan langkah-langkah tersendiri, yakni :
(1) Menentukan titik potong dengan sumbu x , syaratnya y = 0
(2) Menentukan titik potong dengan sumbu y, syaratnya x = 0
(3) Menentukan titik maksimum/minimum fungsi, yaitu
(4) Menggambar grafik fungsi
Untuk lebih jelasnya, ikutilah contoh soal berikut ini :
04. Gambarlah daerah penyelesaian pertidaksamaan kuadrat y > x2 – 8x + 12
Jawab
(1) Tititk potong dengan sumbu-X syarat y = 0
x2 – 8x + 12 = 0
(x – 6)(x – 2) = 0
x = 6 dan x = 2 Titik potongnya (2, 0) dan (6, 0)
(2) Tititk potong dengan sumbu-Y syarat x = 0
y = x2 – 8x + 12
y = (0)2 – 8(0) + 12
y = 12 Titik potongnya (0, 12)
(3) Menentukan titik minimum fungsi y = x2 – 8x + 12
Terkadang suatu fungsi kuadrat dapat ditentukan jika diketahui beberapa unsurnya, yaitu
a. Jika fungsi kuadrat diketahui titik potong dengan sumbu x yaitu (x1 , 0) dan (x2 , 0) maka persamaannya adalah f(x) = a(x – x1)(x – x2)
b. Jika suatu fungsi kuadrat diketahui titik baliknya P(p , q), maka persamaannya adalah f(x) = a(x – p)2 + q
Aturan ini dipakai untuk menyusun pertidaksamaan kuadrat jika diketahui gambar daerah penyelesaiannya.
Untuk lebih jelasnya, ikutilah contoh soal berikut ini:
Pada sistem pertidaksamaan linier dan kuadrat, kedua pertidaksamaan tersebut (linier dan kuadrat) dipadukan dalam satu sistem koordinat Cartesius. Sehingga daerah penyelesaiannya adalah irisan dari daerah penyelesaian pertidaksamaan linier dan pertidaksamaan kuadrat.
Untuk lebih jelasnya ikutilah contoh soal berikut ini:
08. Gambarlah daerah penyelesaian dari sistem pertidaksamaan 2x + 3y ≥ 12 dan y ≤ –x2 + 2x + 8 dalam tata koordinat Cartesius,
Jawab
Pertama akan digambar daerah penyelesaian 2x + 3y ≥ 12
Selanjutnya digambar juga daerah penyelesaian y ≤ –x2 + 2x + 8, dengan langkah langkah :
Menentukan tititk potong dengan sumbu-X syarat y = 0
–x2 + 2x + 8 = 0
x2 – 2x – 8 = 0
(x – 4)(x + 2) = 0
x = –2 dan x = 4 . Titik potongnya (–2 0) dan (4, 0)
Menentukan tititk potong dengan sumbu-Y syarat x = 0
y = –x2 + 2x + 8
y = –(0)2 + 2(0) + 8
y = 8 . Titik potongnya (0, 8)
Menentukan titik maksimum fungsi y = –x2 + 2x + 8
Menggambar daerah penyelesaiannya (Daerah yang diarsir adalah daerah penyelesaian)
Irisan dari kedua daerah penyelesaian tersebut merupakan penyelesaian dari sistem pertidaksamaan 2x + 3y ≥ 12 dan y ≤ –x2 + 2x + 8
Gambar daerahnya adalah sebagai berikut:
Komentar
Posting Komentar