Limit fungsi al jabar
Limit Fungsi Aljabar: Konsep, Metode, Soal dan Pembahasannya
Limit Fungsi Aljabar – Apakah Grameds menyadari bahwa dalam menjalani kehidupan sehari-hari ini, ternyata berkaitan erat pula dengan konsep matematika? Tidak hanya pada konsep hitungan dasar saja, tetapi bahkan pada konsep limit fungsi sekalipun. Ketika tengah berjalan-jalan melewati tol, apakah Grameds pernah iseng memandang di kejauhan jalan raya yang lurus itu. Lantas melihat kendaraan-kendaraan yang melintasi kita bergerak semakin jauh dan ukurannya juga semakin kecil. Nah, hal itu menandakan bahwa kita memiliki sebuah batas. Tidak hanya pada penglihatan saja, tetapi juga ada ambang batas pendengaran, batas kemampuan memikul beban, batas kemampuan membeli sebuah barang, dan lainnya.
Apabila di dalam ilmu matematika, batas tersebut dinamakan dengan istilah “limit”. Fungsi limit dapat berkaitan dengan beberapa cabang matematika lainnya, antara lain aljabar dan trigonometri. Nah kali ini kita akan membahas mengenai limit fungsi aljabar. Apa sih limit fungsi aljabar itu? Apa saja sifat-sifat dalam limit fungsi aljabar ini? Bagaimana metode pemecahan dalam limit fungsi aljabar ini? Yuk, simak ulasan berikut ini supaya Grameds memahami hal-hal tersebut!

https://www.pexels.com/
Pada dasarnya, limit adalah suatu nilai yang menggunakan pendekatan fungsi ketika hendak mendekati nilai tertentu. Singkatnya, limit ini dianggap sebagai nilai yang menuju suatu batas. Disebut sebagai “batas” karena memang ‘dekat’ tetapi tidak bisa dicapai. Lalu, mengapa limit tersebut harus didekati? Karena suatu fungsi biasanya tidak terdefinisikan pada titik-titik tertentu. Meskipun suatu fungsi itu seringkali tidak terdefinisikan oleh titik-titik tertentu, tetapi masih dapat dicari tahu berapa nilai yang dapat didekati oleh fungsi tersebut, terlebih ketika titik tertentu semakin didekati oleh “limit”.
Definisi akan limit fungsi ini ternyata juga dapat dijelaskan secara aljabar lho… Misalkan f adalah fungsi yang terdefinisi pada interval tertentu yang memuat a, kecuali di a itu sendiri, sedangkan L adalah suatu bilangan riil. Maka fungsi f dapat dikatakan memiliki limit L untuk x mendekati a, sehingga ditulis Namun, hanya jika untuk setiap bilangan kecil ε > 0 terdapat bilangan δ > 0 sedemikian rupa sehingga jika 0 < |x-a| <δ maka |f(x)-L| <ε. Pernyataan tersebut dinamakan definisi limit secara umum.
Rumus Limit
Dalam ilmu matematika, konsep limit ini ditulis berupa:
Maksudnya, apabila x mendekati a tetapi x tidak sama dengan a, maka f(x) akan mendekati L. Pendekatan x ke a ini dapat dilihat dari dua sisi, yakni sisi kiri dan sisi kanan. Nah, dengan kata lain bahwa x juga dapat mendekati dari arah kiri dan arah kanan sehingga nantinya akan menghasilkan limit kiri dan limit kanan.
Maka dari itu, diperolehlah pernyataan bahwa:
0 <|x-p|<δ⇔|f(x) – L|ε
Maksudnya, suatu fungsi dapat dikatakan memiliki limit apabila antara limit kiri dan limit kanan juga mempunyai besar nilai yang sama. Apabila limit kiri dan limit kanan tidak sama, maka nilai limitnya juga tidak akan ada.
Sifat Fungsi Limit Aljabar
Apabila n adalah bilangan bulat positif, k adalah konstanta, f dan g adalah fungsi yang mempunyai limit di c, maka sifat-sifatnya akan berupa:
Metode Dalam Pemecahan Limit Fungsi Aljabar
Ada beberapa metode yang lebih sederhana untuk menentukan limit, yakni dengan metode substitusi, memfaktorkan, dan merasionalkan penyebut. Bagaimana saja cara yang diterapkan dalam metode-metode tersebut, yuk simak ulasan berikut!
1. Menentukan Limit dengan Substitusi
Apabila nilai suatu fungsi untuk x mendekati a, yang mana a adalah bilangan riil, maka dapat ditentukan dengan cara substitusi. Dalam cara substitusi ini nantinya akan mengganti nilai x dengan a. Namun, apabila hasilnya menjadi (∞-∞) atau 0/0 ∞/∞. Maka cara ini tidak dapat diterapkan secara langsung. Ada baiknya jika fungsi yang diambil limitnya itu perlu disederhanakan lagi. Perhatikan contoh berikut.
hasil dari limit adalah 1.
Dengan menggunakan cara substitusi, didapat nilai limit sebagai berikut:
Dengan demikian, hasil dari limit adalah 1.
REFERENSI :https://www.gramedia.com
Komentar
Posting Komentar